Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation.
نویسندگان
چکیده
Proper nuclear positioning is important to cell function in many biological processes during animal development. In certain cells, the KASH-domain-containing proteins have been shown to be associated with the nuclear envelope, and to be involved in both nuclear anchorage and migration. We investigated the mechanism and function of nuclear anchorage in skeletal muscle cells by generating mice with single and double-disruption of the KASH-domain-containing genes Syne1 (also known as Syne-1) and Syne2 (also known as Syne-2). We showed that the deletion of the KASH domain of Syne-1 abolished the formation of clusters of synaptic nuclei and disrupted the organization of non-synaptic nuclei in skeletal muscle. Further analysis indicated that the loss of synaptic nuclei in Syne-1 KASH-knockout mice significantly affected the innervation sites and caused longer motor nerve branches. Although disruption of neither Syne-1 nor Syne-2 affected viability or fertility, Syne-1; Syne-2 double-knockout mice died of respiratory failure within 20 minutes of birth. These results suggest that the KASH-domain-containing proteins Syne-1 and Syne-2 play crucial roles in anchoring both synaptic and non-synaptic myonuclei that are important for proper motor neuron innervation and respiration.
منابع مشابه
SUN1/2 and Syne/Nesprin-1/2 Complexes Connect Centrosome to the Nucleus during Neurogenesis and Neuronal Migration in Mice
Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lis1, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the nuclear envelope (NE) remain to be determi...
متن کاملANChors away: an actin based mechanism of nuclear positioning.
Mechanisms for nuclear migration and nuclear anchorage function together to control nuclear positioning. Both tubulin and actin networks play important roles in nuclear positioning. The actin cytoskeleton has been shown to position nuclei in a variety of systems from yeast to plants and animals. It can either act as a stable skeleton to anchor nuclei or supply the active force to move nuclei. T...
متن کاملSyne proteins anchor muscle nuclei at the neuromuscular junction.
Vertebrate skeletal muscle fibers contain hundreds of nuclei, of which three to six are functionally specialized and stably anchored beneath the postsynaptic membrane at the neuromuscular junction (NMJ). The mechanisms that localize synaptic nuclei and the roles they play in neuromuscular development are unknown. Syne-1 is concentrated at the nuclear envelope of synaptic nuclei; its Caenorhabdi...
متن کاملKASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development.
Nuclear movement relative to cell bodies is a fundamental process during certain aspects of mammalian retinal development. During the generation of photoreceptor cells in the cell division cycle, the nuclei of progenitors oscillate between the apical and basal surfaces of the neuroblastic layer (NBL). This process is termed interkinetic nuclear migration (INM). Furthermore, newly formed photore...
متن کاملA role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis.
Expression of a dominant negative fragment of the spectrin family member Syne-1 causes an accumulation of binucleate cells, suggesting a role for this protein in cytokinesis. An association of this fragment with the C-terminal tail domain of the kinesin II subunit KIF3B was identified by yeast two-hybrid and co-precipitation assays, suggesting that the role of Syne-1 in cytokinesis involves an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 134 5 شماره
صفحات -
تاریخ انتشار 2007